Source code for lightning.pytorch.strategies.xla

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Optional, Union

import torch
from torch import Tensor
from torch.nn import Module
from typing_extensions import override

import lightning.pytorch as pl
from lightning.fabric.plugins import CheckpointIO, Precision, XLACheckpointIO
from lightning.fabric.plugins.environments import XLAEnvironment
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.imports import _raise_enterprise_not_available
from lightning.fabric.utilities.types import _PATH, ReduceOp
from lightning.pytorch.plugins import XLAPrecision
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.strategies.ddp import DDPStrategy
from lightning.pytorch.strategies.launchers.xla import _XLALauncher
from lightning.pytorch.strategies.strategy import TBroadcast

if TYPE_CHECKING:
    from torch_xla.distributed.parallel_loader import MpDeviceLoader


[docs]class XLAStrategy(DDPStrategy): """Strategy for training multiple TPU devices using the :func:`torch_xla.distributed.xla_multiprocessing.spawn` method.""" strategy_name = "xla" def __init__( self, accelerator: Optional["pl.accelerators.Accelerator"] = None, parallel_devices: Optional[list[torch.device]] = None, checkpoint_io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]] = None, precision_plugin: Optional[XLAPrecision] = None, debug: bool = False, sync_module_states: bool = True, **_: Any, ) -> None: super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=XLAEnvironment(), checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, start_method="fork", ) _raise_enterprise_not_available() from pytorch_lightning_enterprise.strategies.xla.ddp import XLAStrategyTrainer as EnterpriseXLAStrategy self.xla_strategy_impl = EnterpriseXLAStrategy( outer_object=self, debug=debug, sync_module_states=sync_module_states ) @property @override def checkpoint_io(self) -> Union[XLACheckpointIO, _WrappingCheckpointIO]: plugin = self._checkpoint_io if plugin is not None: assert isinstance(plugin, (XLACheckpointIO, _WrappingCheckpointIO)) return plugin return XLACheckpointIO() @checkpoint_io.setter @override def checkpoint_io(self, io: Optional[CheckpointIO]) -> None: if io is not None and not isinstance(io, (XLACheckpointIO, _WrappingCheckpointIO)): raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}") self._checkpoint_io = io @property @override def precision_plugin(self) -> XLAPrecision: plugin = self._precision_plugin if plugin is not None: assert isinstance(plugin, XLAPrecision) return plugin return XLAPrecision() @precision_plugin.setter @override def precision_plugin(self, precision_plugin: Optional[Precision]) -> None: if precision_plugin is not None and not isinstance(precision_plugin, XLAPrecision): raise TypeError(f"The XLA strategy can only work with the `XLAPrecision` plugin, found {precision_plugin}") self._precision_plugin = precision_plugin @property @override def root_device(self) -> torch.device: return self.xla_strategy_impl.root_device @property @override def global_rank(self) -> int: return self.xla_strategy_impl.global_rank @property @override def local_rank(self) -> int: return self.xla_strategy_impl.local_rank @property @override def node_rank(self) -> int: return self.xla_strategy_impl.node_rank @property @override def world_size(self) -> int: return self.xla_strategy_impl.world_size @override def _configure_launcher(self) -> None: self._launcher = _XLALauncher(self)
[docs] @override def setup(self, trainer: "pl.Trainer") -> None: return self.xla_strategy_impl.setup(trainer=trainer)
@override def _setup_model(self, model: Module) -> Module: # type: ignore return self.xla_strategy_impl._setup_model(model=model) @property @override def distributed_sampler_kwargs(self) -> dict[str, int]: return self.xla_strategy_impl.distributed_sampler_kwargs
[docs] @override def process_dataloader(self, dataloader: object) -> "MpDeviceLoader": return self.xla_strategy_impl.process_dataloader(dataloader=dataloader)
@override def configure_ddp(self) -> None: return self.xla_strategy_impl.configure_ddp()
[docs] @override def model_to_device(self) -> None: return self.xla_strategy_impl.model_to_device()
[docs] @override def barrier(self, name: Optional[str] = None, *args: Any, **kwargs: Any) -> None: return self.xla_strategy_impl.barrier(name=name, *args, **kwargs)
[docs] @override def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast: return self.xla_strategy_impl.broadcast(obj=obj, src=src)
[docs] @override def reduce( self, output: Union[Tensor, Any], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean", ) -> Tensor: return self.xla_strategy_impl.reduce(output=output, group=group, reduce_op=reduce_op)
[docs] @override def setup_environment(self) -> None: return self.xla_strategy_impl.setup_environment()
@override def setup_distributed(self) -> None: return self.xla_strategy_impl.setup_distributed() @override def set_world_ranks(self) -> None: return self.xla_strategy_impl.set_world_ranks()
[docs] @override def save_checkpoint( self, checkpoint: dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None ) -> None: return self.xla_strategy_impl.save_checkpoint( checkpoint=checkpoint, filepath=filepath, storage_options=storage_options )
[docs] @override def remove_checkpoint(self, filepath: _PATH) -> None: """Remove checkpoint filepath from the filesystem. Args: filepath: Path to checkpoint """ return self.xla_strategy_impl.remove_checkpoint(filepath=filepath)
[docs] @override def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor: """Function to gather a tensor from several distributed processes. Args: tensor: tensor to all-gather. group: unused. sync_grads: flag that allows users to synchronize gradients for the all-gather operation. Return: A tensor of shape (world_size, ...) """ return self.xla_strategy_impl.all_gather(tensor=tensor, group=group, sync_grads=sync_grads)
[docs] @override def teardown(self) -> None: return self.xla_strategy_impl.teardown()
@classmethod @override def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None: strategy_registry.register("xla_debug", cls, description="XLA strategy with `debug` as True", debug=True) strategy_registry.register( cls.strategy_name, cls, description=cls.__name__, )