Source code for lightning.pytorch.strategies.xla
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.plugins import CheckpointIO, Precision, XLACheckpointIO
from lightning.fabric.plugins.environments import XLAEnvironment
from lightning.fabric.strategies import _StrategyRegistry
from lightning.fabric.utilities.imports import _raise_enterprise_not_available
from lightning.fabric.utilities.types import _PATH, ReduceOp
from lightning.pytorch.plugins import XLAPrecision
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.strategies.ddp import DDPStrategy
from lightning.pytorch.strategies.launchers.xla import _XLALauncher
from lightning.pytorch.strategies.strategy import TBroadcast
if TYPE_CHECKING:
from torch_xla.distributed.parallel_loader import MpDeviceLoader
[docs]class XLAStrategy(DDPStrategy):
"""Strategy for training multiple TPU devices using the :func:`torch_xla.distributed.xla_multiprocessing.spawn`
method."""
strategy_name = "xla"
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[list[torch.device]] = None,
checkpoint_io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]] = None,
precision_plugin: Optional[XLAPrecision] = None,
debug: bool = False,
sync_module_states: bool = True,
**_: Any,
) -> None:
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=XLAEnvironment(),
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
start_method="fork",
)
_raise_enterprise_not_available()
from pytorch_lightning_enterprise.strategies.xla.ddp import XLAStrategyTrainer as EnterpriseXLAStrategy
self.xla_strategy_impl = EnterpriseXLAStrategy(
outer_object=self, debug=debug, sync_module_states=sync_module_states
)
@property
@override
def checkpoint_io(self) -> Union[XLACheckpointIO, _WrappingCheckpointIO]:
plugin = self._checkpoint_io
if plugin is not None:
assert isinstance(plugin, (XLACheckpointIO, _WrappingCheckpointIO))
return plugin
return XLACheckpointIO()
@checkpoint_io.setter
@override
def checkpoint_io(self, io: Optional[CheckpointIO]) -> None:
if io is not None and not isinstance(io, (XLACheckpointIO, _WrappingCheckpointIO)):
raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}")
self._checkpoint_io = io
@property
@override
def precision_plugin(self) -> XLAPrecision:
plugin = self._precision_plugin
if plugin is not None:
assert isinstance(plugin, XLAPrecision)
return plugin
return XLAPrecision()
@precision_plugin.setter
@override
def precision_plugin(self, precision_plugin: Optional[Precision]) -> None:
if precision_plugin is not None and not isinstance(precision_plugin, XLAPrecision):
raise TypeError(f"The XLA strategy can only work with the `XLAPrecision` plugin, found {precision_plugin}")
self._precision_plugin = precision_plugin
@property
@override
def root_device(self) -> torch.device:
return self.xla_strategy_impl.root_device
@property
@override
def global_rank(self) -> int:
return self.xla_strategy_impl.global_rank
@property
@override
def local_rank(self) -> int:
return self.xla_strategy_impl.local_rank
@property
@override
def node_rank(self) -> int:
return self.xla_strategy_impl.node_rank
@property
@override
def world_size(self) -> int:
return self.xla_strategy_impl.world_size
@override
def _configure_launcher(self) -> None:
self._launcher = _XLALauncher(self)
[docs] @override
def setup(self, trainer: "pl.Trainer") -> None:
return self.xla_strategy_impl.setup(trainer=trainer)
@override
def _setup_model(self, model: Module) -> Module: # type: ignore
return self.xla_strategy_impl._setup_model(model=model)
@property
@override
def distributed_sampler_kwargs(self) -> dict[str, int]:
return self.xla_strategy_impl.distributed_sampler_kwargs
[docs] @override
def process_dataloader(self, dataloader: object) -> "MpDeviceLoader":
return self.xla_strategy_impl.process_dataloader(dataloader=dataloader)
@override
def configure_ddp(self) -> None:
return self.xla_strategy_impl.configure_ddp()
[docs] @override
def model_to_device(self) -> None:
return self.xla_strategy_impl.model_to_device()
[docs] @override
def barrier(self, name: Optional[str] = None, *args: Any, **kwargs: Any) -> None:
return self.xla_strategy_impl.barrier(name=name, *args, **kwargs)
[docs] @override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
return self.xla_strategy_impl.broadcast(obj=obj, src=src)
[docs] @override
def reduce(
self,
output: Union[Tensor, Any],
group: Optional[Any] = None,
reduce_op: Optional[Union[ReduceOp, str]] = "mean",
) -> Tensor:
return self.xla_strategy_impl.reduce(output=output, group=group, reduce_op=reduce_op)
[docs] @override
def setup_environment(self) -> None:
return self.xla_strategy_impl.setup_environment()
@override
def setup_distributed(self) -> None:
return self.xla_strategy_impl.setup_distributed()
@override
def set_world_ranks(self) -> None:
return self.xla_strategy_impl.set_world_ranks()
[docs] @override
def save_checkpoint(
self, checkpoint: dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None
) -> None:
return self.xla_strategy_impl.save_checkpoint(
checkpoint=checkpoint, filepath=filepath, storage_options=storage_options
)
[docs] @override
def remove_checkpoint(self, filepath: _PATH) -> None:
"""Remove checkpoint filepath from the filesystem.
Args:
filepath: Path to checkpoint
"""
return self.xla_strategy_impl.remove_checkpoint(filepath=filepath)
[docs] @override
def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor:
"""Function to gather a tensor from several distributed processes.
Args:
tensor: tensor to all-gather.
group: unused.
sync_grads: flag that allows users to synchronize gradients for the all-gather operation.
Return:
A tensor of shape (world_size, ...)
"""
return self.xla_strategy_impl.all_gather(tensor=tensor, group=group, sync_grads=sync_grads)
[docs] @override
def teardown(self) -> None:
return self.xla_strategy_impl.teardown()
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register("xla_debug", cls, description="XLA strategy with `debug` as True", debug=True)
strategy_registry.register(
cls.strategy_name,
cls,
description=cls.__name__,
)